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Abstract

To use optical remote sensing to monitor land surface-climate interactions over large areas,

algorithms must be developed to relate multispectral measurements to key variables controlling

the exchange of matter (water, carbon dioxide) and energy between the land surface and the

atmosphere. The proportion of the ground covered by vegetation and the interception of

photosynthetically active radiation (PAR) by vegetation are examples of two variables related

to evapotranspiration and primary production, respectively. An areal-proportion model of the

multispectral reflectance of shrub savanna, composed of scattered shrubs with a grass, forb or

soil understory, predicted the reflectance of two 0.5 km 2 sites as the area-weighted average of

the shrub and understory or 'background' reflectances. Although the shaded crown and shaded

background have darker reflectances, ignoring them in the area-weighted model is not serious

when shrub cover is low and solar zenith angle is small. A submodel predicted the reflectance of

the shrub crown as a function of the foliage reflectance and amount of plant material within the

crown, and the background reflectance scattered or transmitted through canopy gaps (referred

to as a soil-plant 'spectral interaction' term). One may be able to combine these two models to

estimate both the fraction of vegetation cover and interception of PAR by green vegetation in a

shrub savanna.

* Corresponding author.
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I. Introduction

The HAPEX-Sahel (Hydrologic Atmospheric Pilot Experiment) that took place

during 1991-1993 is part of a major international research effort to study land surface
climatology, and the exchange of mass and energy between the land surface and the

atmosphere (Andr6 et al., 1988; Shuttleworth, 1991; Sellers et al., 1992; Bolle et al.,

1993). The experiment is aimed at improving the parameterization of land surface-

atmosphere interactions at the General Circulation Model (GCM) grid-cell scale

(Goutorbe et al., 1993). The HAPEX-Sahel study area, located in Niger, West

Africa, comprises a ! ° latitude by 1° longitude square (13-14°N, 2-3°E). Com-

ponents of energy, carbon and water balances were measured in three supersites

within this study area using ground-based instruments and measurements, concen-

trating on the intensive observation period (lOP) of August-October 1992 (Goutorbe

et al., 1993). One objective of HAPEX-Sahel was to develop algorithms for estimating

surface parameters that are important in the land surface-atmosphere exchanges of

energy and moisture in the subtropics from remotely sensed data (Prince et al., 1993).

A complementary objective is to validate a physiologically based model of primary
productivity driven by the normalized difference vegetation index (NDVI) derived

from coarse-resolution AVHRR (advanced very high resolution radiometer) satellite

data (Prince, 1991). The NDVI exploits the contrast between the near-infrared (NIR)

reflectance and the red absorption of green (photosynthetically active) vegetation.

Plant photosynthesis is intimately linked to the carbon, oxygen and water cycles. One

of the major land cover types in the study area is shrub savanna consisting of a sparse

overstory of shrubs (bushes) and small trees with an understory of grasses or, in areas

subject to sheet erosion, bare soil with some herbaceous annuals. In 1991, we made

field measurements of vegetation cover (including shrub size and density), above-

ground production, surface reflectance and photosynthetically active radiation

(PAR) interception by shrubs in a degraded bushland and a bush/grassland site in
Niger. This is the first in a series of three papers in which we discuss (I) the geometric-

optical modelling of canopy reflectance (this paper), (2) PAR interception of the

woody layer (B6gu6 et al., 1993), and (3) bidirectional reflectance characteristics

and vegetation indices for monitoring primary production (Van Leeuwen et al.,

1993).

Shrub cover affects the radiative transfer, and hence the relationship between

primary productivity, absorbed PAR, and green vegetation indices in a number of

ways. In addition to absorbing and scattering visible and NIR radiation with photo-

synthetically active green leaves, shrubs also (a) absorb PAR with non-photosynthetic

branches, (b) cast shadows (intercept PAR that would otherwise have reached the

understory or soil), and (c) scatter NIR radiation onto the understory or ground

surface. The magnitude of these effects on canopy reflectance was explored by testing

a simple, areal-proportion model of canopy reflectance which predicts the global

reflectance of a site from the reflectances of vegetation and soil, weighted by their

cover, with and without shadowing effects, predicted from crown geometry. A sub-

model which explicitly treats the spectral interaction between the shrub canopy and
background was then tested. This submodel was used to predict reflectances of the
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individual components (shaded and unshaded plant crown, and shaded background)
that are used in the site-scale areal-proportion model.

2. Background

2.1. Areal-proportion site reflectance model

The four-component Li Strahler discrete object canopy reflectance model used in

this study (Li and Strahler, 1985) can be summarized as follows. The spatially

averaged reflectance, R c, of a pixel (ground resolution element in a digital image)

or a group of pixels corresponding to a vegetation stand whose canopy consists of

discrete crowns casting shadows on a contrasting, spectrally uniform background

(continuous grass cover, soil, snow, etc.), can be modelled as the weighted average

of four component reflectances:

Rc; = (PsRs) + (PzRz) + (PTRr) + (PoRe) (l)

where P is the cover proportion, R is the reflectance of sunlit background (S), shaded

background (Z), shaded shrub crown (T), and sunlit shrub crown (C). In this paper,

it is assumed the crowns are shrubs and the background is soil or herbaceous vegeta-
tion. A subscript for wavelength has been omitted for simplicity. We refer to a

composite land surface consisting of discrete plant crowns over bare soil or an

understory as a plant canopy (a discontinuous canopy) in order to be consistent
with the literature, and we call this the site reflectance model.

The projected area of the crown component is equal to the sum of the shrub crown
areas, _'_ 7rr2 (where r is the radii of n shrubs in the site), if the crowns are treated as

spheroids and overlap is ignored. Crown cover can be estimated as the product of
average crown area (Trr2) and the average shrub density (N) per unit area if the

variance of crown size is small. It was assumed that the shape of the shrubs in this

study could be approximated to a spheroid (see Franklin and Turner, 1992), and the

average canopy dimensions and solar zenith angle were used to estimate a geometric

parameter, F, which we will refer to as a shadow cover index. The product mF is the

proportion of the area covered by shrub crown and its associated shadow, where m

can be thought of as a crown cover index equal to _' rZ/A (A is the area of the site).

The formula for F for a spheroid is given in Strahler et al. (1988) and reproduced here

for clarity

F = 7r + 7r/cos 0' - A0 (2)

where

1
A0 = (B- _ sin2B)(1 + l/cos0')
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if (b + h) tan 0 > r(1 + 1/cos 0'), otherwise A0 = 0. In this expression

B=cos '[(1 +h/b)C-cos0"]si_ 7 j]

and

O' = tan-I[(b/r) tan 0]

where r and b are the horizontal and vertical radii of the spheroid, h is the height of the

spheroid above the ground, and 0 is the solar zenith angle. (The stem height, h, is set to

zero for a shrub.)

The proportions of the shrub plus shadow, the total figure (mF), which are crown

(Kc), shaded crown (Kr), and shaded background (Kz) (where Kc, K r and K z sum to

1) can also be estimated from the geometry of the spheroid and the solar zenith angle
as it was in Li and Strahler (1985) for a cone-shaped canopy.

For a spheroid

7r/2(1 + cos 0')
Kc = r ' (3)

7r/2(1 - cos0')
KT = V ' (4)

F-Tr

Kz- r (5)

The cover proportions (P), which also must sum to 1, can be found from the

following

Ps = 1 - mr (6)

Pc = KcmF (7)

PT = KTmF (8)

ez = Kz mF (9)

If the component reflectances are known, then Eq. (1) can be solved to estimate the
stand or site reflectance in each waveband. Note that while the version of the model

presented above assumes no overlapping of shrub crowns, the model has been mod-

ified further by Li and Strahler (1985, 1992) to account for changes in component

proportions as a function of increasing crown overlap with cover.

2.2. Component reflectance submodel

Huete (1987) presented a model of the reflectance of a vegetated surface that

approximates the first-order spectral interaction between an incomplete vegetation

canopy and the soil background. He used this model to decompose canopy reflectance

spectra into "a soil-dependent component and a vegetation component free of soil
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influence" (Huete, 1987, p. 61). The vegetation canopy reflectance, r,., can be
expressed as

r,. = t),.c,. + p._T,: (10)

where p,. is the reflectance of the vegetation (plant parts), c,. is the amount of vegeta-
tion in the sensor field of view (cover), p., is the soil reflectance and _-,?is the downward

and upward global transmittance through the canopy. Global transmittance includes

radiation reaching the soil surface by leaf transmission, plant scattering and penetra-

tion of direct and diffuse irradiance through canopy gaps. Upward and downward

transmission are assumed to be equal and second-order interactions are ignored.

Huete (1987) found that the soil-dependent contribution to canopy reflectance
(p.O-,,2) was significant when canopy cover was incomplete: soil-dependent canopy

reflectance was greater in the NIR, which is strongly scattered by green vegetation,
than in the visible wavelengths where the vegetation absorbs strongly.

The simple physical model behind Huete's formulation is a vegetation layer of

small scattering elements covering a soil surface in a more or less uniform fashion.

By way of leaf and gap transmission, beam and diffuse radiation penetrate the

canopy, are scattered by the underlying soil layer, and are then transmitted upward

to exit from the vegetation layer. This formulation also applies to a discontinuous

plant canopy, such as a collection of sparse shrubs over a soil background. In this

case, the transmission factor, T,., includes geometric-optical effects such as those

employed in the Li Strahler model formulation.

H uete's (1987) first-order interaction model can also be extended to the crown and

shaded components of the Li Strahler model (1985) by calculating the component

reflectances in Eq. (1) as follows

Rs _ p,

Rc = p_c,. + p.,.r,2

RT =.[il(p,.c,. + psT_)+ (I -- f_l)p.,.'r,2+ (I --.f;l)p,.c,.'r c

Rz = k,,p,,nji_p,+ (1 - ilt)p,T,

(11)

(12)

(13)

(14)

where.f_¢ is the fraction of diffuse irradiance and K,,V is the proportion of diffuse
irradiance reaching the shrub-shaded soil, on average, as a function of shrub height

and density. In this case, c,. is the projected vegetation cover within the perimeter of

the plant crown (including foliage and branches in the case of shrubs), and _-,.

measures the transmittance within that perimeter as well. Equations (11)-(13)

taken together are referred to as the component submodel.

Equation (11) indicates that the soil background reflectance from Huete's notation

(P.0 is equivalent to the sunlit soil reflectance (Rs) in the Li-Strahler formulation.

Equation (12) applies Huete's model from Eq. (10) to the reflectance from the plant

crown (the discrete clump of vegetation in the Li-Strahler model). Equation (13)

states that the reflectance of the shaded crown component from Eq. (1) is equal to

the diffuse irradiance (fA reaching the shaded portion of the crown and reflected
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from it (prey), plus the direct beam irradiance (1 --fd) transmitted through the crown
and reflected from the soil (psvc2), plus that which is transmitted through the crown

and reflected from the vegetation (p_.c,.rc) on the shaded side. Equation (14) describes

the reflectance from the soil shaded by the plant crown as the sum of the diffuse

irradiance reaching the ground that is reflected by the soil (Kope, fap.O and the direct
beam irradiance transmitted through the adjacent crown and reflected from the soil

((1 -fa)Tcps). Note that these approximations for Rr and Rz assume that only direct

irradiance is transmitted through the canopy, and that diffuse skylight from the rest of

the sky hemisphere also illuminates the shaded shrub crown and soil.

Kope, is used in Rz to adjust J_ for the effect of surrounding shrub crowns (fd is not
received from the entire hemisphere). It is approximated by calculating the between-

crown gap probability over the entire sky hemisphere given the size and shape of the
shrubs.

f ,r/2

Kope, = J0 e mr(°)sinOdO. (15)

This effect is ignored in R r because it is more difficult to approximate and smaller in

magnitude (because shaded shrub crown is, on average, higher off the ground surface

and more open to skylight). Within this submodel, component reflectances are cal-

culated more deterministically, as a function of vegetation and soil reflectances,

within-crown cover and transmission, and geometric arrangement. The significance

of the soil-dependent interaction terms in Re, Rr and Rz to the area-averaged site

reflectance model would depend on their relative cover (Pc, PT and Pz) as well as the

vegetation cover within the perimeter of the crown, cv, and the magnitude of the
wavelength-dependent canopy transmittance, TC.

Finally, we have only considered vertical interaction. With a canopy layer com-

posed of discrete crowns, scattering from the crowns onto the adjacent background

would increase the reflectance of the background near the crown perimeter and could

contribute to area-averaged reflectance. Presumably this adjacency effect (or 'halo')

would decay rapidly with distance from the canopy, even in the strongly scattering

wavelengths.

3. Study area

The study sites were located in Niger, West Africa, near Ouallam (14°19'N, i c58'E),

about 100 km north of Niamey. The region experiences a short summer rainy

season from June to September, and the average annual rainfall has been about 300

mm for the last 10 years (Institute National de Recherches Agronomiques du Niger

(INRAN), unpublished data). The year the field data were collected (1991) was

exceptionally wet with 510 mm rainfall for the season (INRAN, unpublished data).

This area is within the zone of rainfed agriculture, and the principal crop is pearl

millet (Pennisetum glaucum). The landscape is a mosaic of a number of land cover

types (Van Leeuwen et al., 1993) including millet and other cultivated fields, laterite-

capped plateaus with 'tiger bush' (banded woody vegetation), and bush-fallow areas,
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e.g. bushland or bush/grassland in various stages of secondary succession (Casenave
and Valentin, 1989; Courault et aI., 1990; Goutorbe et al., 1993). The bushland and

bush/grassland (sometimes termed shrub savanna; Cole, 1986) would be the domi-

nant natural vegetation type on the non-laterite areas in the absence of cultivation,

and regenerates in areas that are [eft fallow (uncultivated). Areas left fallow for a

short period (perhaps 1-3 years) are dominated by annual forbs and, after about

3-15 years, perennial grasses and shrubs regenerate (Courault et al., 1990). The

distribution of vegetation types is determined by local site conditions, including soil

texture, topographic position, and other factors affecting soil moisture availability

(Justice and Hiernaux, 1986), as well as by land use.

Two contrasting bush fallow sites were chosen for study in 1991. Both sites have shrub

canopies consisting almost exclusively of Guiera senegalensis with occasional Combre-

turn micranthum, C. ghainosum, and other woody species. The bush/grassland site has an

understory of perennial bunch grass (mainly Aristida mutabulis and A. kerstingii with

some Eragrostis tremula and various forbs) while the degraded bushland site has been

subjected to sheet erosion and the area between shrubs consists of exposed bare soil with

some patchy annual forbs. Both sites were used for grazing by goats (Guiera and other

shrubs were browsed), and the degraded bushland site for fuelwood collection, although
living shrubs were not lopped (personal observation, 1991).

It was anticipated that these sites would serve as instrumented subsites during the

]992 HAPEX IOP, but travel restrictions made it impossible to work near Ouallam in

1992. However, the vegetation cover in the two sites is typical of the larger HAPEX

study area. For example, land dominated by shrubs and perennial grasses (including

bush/grassland, degraded bushland and the sandy skirts, or "jupes sableuses', sur-
rounding the laterite plateaus) were estimated to cover about 45% of a 400 km 2 area
centred on the two shrub sites based on statistical classification of satellite multi-

spectral data (J. Duncan and J. Franklin, unpublished data, 1992; note that those
estimates were not quantitatively assessed by field sampling).

4. Methods

4.1. Shrub shape, size distribution and densiO', and vegetation cover

For each of the two field sites, 250-350 measurements of shrub crown dimensions,

the height and two diameters (the longest diameter and one perpendicular to it) were

made in ten circular subplots (15 or 20 m radius) laid out on a regular grid (Fig, 1).
Measurements were made on various dates between 27 July and 18 August 1991, with

the assumption that shrub crown volume did not change greatly over this short
interval (although some browsing and leaf growth did occur). These data, and the

counts of shrubs within the subplots, were used to calculate shrub shape (character-

ized by the ratio of height to width), size and density per unit area. Cover of all major

surface components was also estimated for each site along two parallel 1000-m

transects, 75 m apart (described in Van Leeuwen et al., 1993) using the step-point
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DEGRADED BUSH SITE

__._-------,_..
1000m transects

0o0o0 /

15m radius plots, 40m apart

eRain Gauge

Road100m

N

BUSH GRASS SITE

Road

20m radius plots,
50m apart

.-EL'_''_'''" 1000m transects

15m radius plots, / O O /

40m apart _ __
_000

/ Rain Gauge•

100m

N

Fig. 1. Layout of subplots within (top) the degraded bushland site, and (bottom) the bush/grassland site.

These subplots were used for measuring shrub size and density and component reflectances. Also indicated
are the locations of the 1000-m transects used to characterize cover and reflectance for the sites.

method (Bonham, 1989). Multiple layers were recorded, but data presented in this

paper only include the top layer, and therefore sum to 100% projected cover for the

site. Cover categories included are: (!) bare soil; (2) grass; (3) forbs; (4) Guiera (the

dominant shrub); (5) other shrubs (Combretum micranthum, C. ghainosum); (6) plant

litter on the soil surface. Cover measurements were repeated during each of three

sampling periods approximately 2 weeks apart during the growing season (Tables I

and 2).
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Table 1

Sample dates, local time and solar zenith angles (0) for shrub and site reflectance transects and cover

measurements.

Sampling period

1 2 3

Date No Solar

and of zenith

time shrubs angle

Date No Solar

and of zenith

time shrubs angle

Date No Solar

and of zenith

time shrubs angle

Bush"grasslaml

shrub reflectance 1 Aug 91 10 Aug 91 22 Aug 91
10:30h 20 36 15:30h 18 36 10:45h 23 32

15:30h 24 36

site reflectance 30 Jul 91 15 Aug 91 25 Aug 91
10:00h 42 10:40h 33 10:05h 41

site cover 26 Jul 91 16 Aug 91 25 Aug 91

Degraded hushland

shrub reflectance 28 Jul 91 9 Aug 91 23 Aug 91

15:45h 19 40 II:00h 25 34 10:05h 24 41

16: 10h 10 47

site reflectance 29 Jul 91 15 Aug 91 25 Aug 91

lO:30h 36 10:00h 42 10:45h 32

site cover 24 Jul 91 16 Aug 91 24 Aug 91

4.2. Component and site re[tectances and vegetation indices

The reflectances of the four components were estimated based on field measure-

ments using an Exotech radiometer (Exotech, Gaithersburg, MD, USA) and SPOT

bandpass filters. Component radiances were sampled along short transects through

individual shrubs oriented in the principal plane of the sun as described in Franklin

and Turner (1992) and Franklin et al. (l 993), and these will be referred to as the shrub

reflectance transects (Fig. 2). The nominal height of the radiometer above the target

Table 2

Cover of the surface components (top layer only non-overlapping cover) expressed as a proportion of

the total transect length for each of the three sample periods

Component Bush/grassland Degraded bushland

26 Jul 91 16 Aug 91 25 Aug 91 24 Jul 91 16 Aug 91 24 Aug 91

Soil 0.40 0.35 0.37 0,82 0.78 0.77

Grass 0.37 0.45 0.42 0,03 0.04 0.04

Forb 0.02 0.04 0.04 0,04 0.07 0.08

Guiera 0.07 0,07 0.05 0.10 0.09 O. I0

Other shrub 0.02 0.00 0.00 0,00 0.00 0.00

Litter 0.13 0. l 1 0.1 I 0,01 0.04 0.04
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BK1 BK2 BK3 BK4 BK5 BK6CR1 CR2 SHCR SHBK

2m _ _ 2m

Fig. 2. Location of radiance measurements in shrub transects, where measurements are of background
radiance (BKI-6); shrub crown (CR1-2): shaded shrub crown (SHCR); and shaded background (SHBK).

was 0.5-1.5 m and, with a 15° field-of-view lens, the footprint was 0.13-0.39 m in

diameter. Observations made within each of the four components were averaged. This

yielded 10 40 radiance observations per component in each site during each of three

sampling periods (Table 1). The sampling scheme also allowed us to examine the

data for evidence of scattering of radiation by the shrubs onto the adjacent ground,
In addition, measurements of global or average site radiance were made along two

1000-m transects (the same ones used to make the cover estimates) using a yoke

mount for the radiometer and taking measurements every 5 m from a height of

1.9 m, yielding a target diameter of 0.45 m (Van Leeuwen et al., 1993). All observa-

tions for the site were averaged. These transect-based site averages were used to

validate the areal-proportion site reflectance model.

The 1000-m transect measurements were all made at approximately the same time

of the morning (Table 1). The shrub transect measurements were taken between 10:00

and 11:00 h or 15:00 and 16:00 h local time, when the solar zenith angle ranged from

32 ° to 47 ° (Table 1). (While Van Leeuwen et al. (1993) noted that surface reflectance

varied between morning and afternoon as the soil dried in a 20% grass cover site, we

did not observe this pattern in the shrub transect data.) All radiance measurements

were calibrated using measurements from a barium sulfate reference plate. Results are

presented here for the red (0.61-0.68 ILm) and NIR (0.79-0.89 #m) SPOT wavebands.

In addition, the normalized difference vegetation index, NDVI = (NIR- red)/

(NIR+ red), and soil adjusted vegetation index, SAVI = [(NIR- red)/(NIR+

red + L)](1 + L) where L is a constant used to normalize for soil background effects
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(Huete, 1988), were calculated for each of the components and for the site, based on

red and NIR reflectance. (ln this study, L = 1; see Franklin et al., 1993.)

4.3. Areal-proportion site reflectance model

The cover variable, m, was calculated from the sum of crown area in the subplots
within each site. The shadow cover index, F, was calculated for each observation date

based on the angle of the sun and the average height to diameter ratio of the shrubs

measured in each site using Eq. (2). Then the proportions of the four components
were estimated for each date from Eqs. (3)-(9). The estimates of shrub cover from the

geometric model (Trm) were compared with the independent estimates of shrub cover
made by line intercept along the two 1000-m transects (Fig. 1) to make sure that

estimates were reasonable (see Results). The modelled cover proportions were used

with the sampled component reflectances from each date to estimate average red and

N1R site reflectance for each date using Eq. (1). Background reflectance for the bush/

grassland site was calculated from the weighted average of grass and soil reflectance,

and the cover proportions from the 1000-m transects for each date (Table 2). This was

considered to be a more reasonable estimate of the background reflectance for the

whole site than background measured on the shrub reflectance transects because grass

cover tended to be high adjacent to the shrubs.
The red and NIR site reflectances were also calculated based on the sunlit crown

and background components only. The shrub cover proportion was assumed to be
mzr and background cover 1 - mTr, The purpose of this was to determine the magni-

tude of the contribution of shaded component reflectances to site reflectance, and this

will be referred to as the two-component model, while Eq. (I) describes the four-

component model.
The vegetation indices (VIs), NDVI and SAVI were then calculated for each site

from the predicted red and NIR reflectances based on the four component model
from each date (see Hanan et al., 1991)

NDVI = (R(;,n/r - RG,..a)/(R6..i_ + R_;,._,I)

where R_;.r,,,t is the red reflectance of the site, and R_,,,_ is the NIR reflectance of the
site both calculated from Eq. (!).

4.4. Component reflectance submodel

The component submodel was used to predict the component reflectances, R c, Rr

and R z for the degraded bushland and bush/grassland sites using Eqs. (11)-(14). Red

and NIR soil background reflectance, Rs, a, were known from field measurements.

Red and NIR reflectances from vegetation, p_,_, were sampled in 1992 at a similar site

on 26 September. Approximately ten layers of foliage were cut and stacked, and the
reflectance was measured immediately with the Exotech radiometer. Note that this

'pure' foliage/branch component reflectance does not account for the canopy archi-

tecture of an intact shrub, and that cutting can affect the NIR reflectance of leaves

within minutes. We assumed that this did not occur in the sclerophyllous Guiera
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leaves. The ratio of diffuse to direct irradiance, fa, A was based on the literature
(Rosenberg et al., 1983). Values of 0.2 and 0.1 were used for the red and NIR

bands, reasonable values for a clear atmosphere (Dozier, 1981). (According to an

empirical formula given in B+gu6 et al. (1993),fa for solar radiation in Niamey would

be 0.22 for the average sun angle at which our measurements were taken.) K,,p,,n was
calculated based on the height and density of shrubs in the stands using Eq. (15).

The canopy transmittance, r,., should vary as a function of foliage cover within the

crown, cv, and wavelength. Radiative transfer models have often treated this as

exponential decay of radiation as a function of leaf area index (the density of scatter-

ing elements within the canopy layer) according to Beer's Law. In this study we relied

on estimates of cv and rc based on B6gu6's radiative transfer model for Guiera. These
estimates were calculated from measurements of crown volume, leaf and stem area,

and angle distribution functions (taken as uniform) on a sample of 56 shrubs (B_gu6

et al., 1993). We calculated cv for each shrub using their Eq. (4), a uniform element
angle distribution, and setting leaf and stem transmissivity and solar zenith angle

equal to zero. The red and NIR crown transmission (r_,_ termed 'porosity' in
B_gu6's model) was calculated for each shrub using leaf transmissivities 0.1 and

0.4, respectively. Their Eq. (5) was used to approximate the extinction coefficient

for a uniform element angle distribution. Cover (c,,) was related to crown transmit-

tance (re) by regression for each wavelength. The average size of the bushes at each

site was then used to predict the average leaf and stem area indices (see B_gu6 et al.,

1993), which were used, as described above, to calculate an average q. for each site.

The regressions developed above were used to calculate re, _ for the site. Estimates of

component reflectances were compared to observations from the third sample date

(nearest to the end of the growing season), because estimates of transmissivity were
based on leaf and stem area sampled at the end of the growing season, and the

measurements of vegetation reflectance (P0 were also made towards the end of the

growing season (in 1992).

5. Results

5.1. Shrub shape, size distribution, density, and vegetation cover

Guiera shrubs in the bush/grassland site were significantly larger than those in the

degraded bushland site (P < 0.0001) and had higher leaf area index (B6gu6 et al.,

1993), but their density was much lower and cover was slightly lower (Table 3). Shrub

height and average diameter were normally to slightly lognormally distributed.

Projected crown area, calculated from average radius, was lognormally distributed
for both sites (B6gu6 et al., 1993). Shrub crown cover within each site was estimated

from the geometric model by summing the projected crown areas for all shrubs

measured in the subplots (note that this assumes no canopy overlap); it was 8% in

the bush/grassland site and 9% in the degraded bushland site (Table 3).

Shrub cover sampled on the 1000-m transects for the whole site, about 6% for the

bush/grassland site and 9.5% for the degraded bushland site (Table 2), was similar to
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Table 3

Shrub size, shape and density tbr the bush/grassland and degraded bushland sites

235

Bush/grass Degraded bush

(n = 250) tn = 351)

Height (m) 1.64 (0.44)" 1.14 (0.35)

Diameter I (m/' 2.14 (0,86) 1,73 (0.71)

Diameter 2 (m) 1.72 (0,75) 1.43 (0.64)

H/D" 0.93 (0.31) 0.77 (0.25)

Density 270 ha I 495 ha t

Cover 8,07% 9.38%

"Standard deviation in parentheses.

h Diameters 1 and 2 are the longest axis and the one perpendicular to it.

' H/D is the average height to diameter ratio.

the values estimated from the geometric model (Table 3), indicating that the subplots

were representative of the sites and the geometric model was valid. The lower cover

detected by the transect method in the bush/grassland site was probably due to the

difference in the methods. The transect method counted gaps in the canopy which

were encountered as background, while the geometric model estimated the projected

crown area. There was an increase in the cover of forbs during the growing season in
the bush/grassland and degraded bushland sites (Table 2). Grass cover increased in

the bush/grassland site over the three sampling dates. Guiera cover decreased by a few

per cent, probably due to browsing by goats (Table 2). Above-ground biomass was

observed to increase for the grasses in the grass site, from 800 to 1700 kg ha 1 dry

matter (based on ten 0.16-m 2 samples per date; Van Leeuwen et al., 1993).

5.2. Component reflectances

The measured component reflectances show that in the bush/grassland site, where
the background is about 50% grass cover (Table 2), the background contrasts some-

what to the shrub canopy and its associated shadowed components in the red band

(Fig. 3). While the differences are small, they are significant (Bonferroni P < 0.01; all

P values reported are based on the Bonferroni adjustment; see Franklin et al. (1993)

for discussion of multiple comparisons of means procedures in this context). In the

degraded bushland site where the background in mainly soil the contrast is very

strong (Fig. 4) and significant (P < 0.01). However, in both sites the background

has NIR reflectance similar to or slightly higher than shrub crown (and the difference

was not significant), even when the background is bare soil, and both are brighter

than the shadowed components (Figs. 3 and 4). This is not an unusual pattern for

bright soils in arid lands (Graetz and Gentle, 1982; B_gu_ and Prince, 1992; Franklin

et al., 1993).

The NDVI and SAVI normalize for the effect of illumination and shadowing in

that the VI values for the shaded components are similar to those of their sunlit

counterparts (Fig. 4) although the pattern is less clear for the bush/grassland site
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(Fig. 3) where the background is a variable mixture of soil and grass. While the NDV1

of sunlit versus shadowed crown was not significantly different, the SAVI was in most

cases; conversely, the NDVI of sunlit versus shadowed background was significantly
different while the SAVI was not. The continuous nature of the variation in reflect-

ance properties of the components is also apparent (Figs. 3 and 4). In the degraded

bushland site there is very little temporal change in the greenness of the shrub

canopies over the three dates (Fig. 4), but there is some evidence of the NIR "halo"
which is the increase in NIR reflectance from background (BK) measurements BK3

to BK4, causing a concurrent increase in V1 values. While the magnitude of this effect

is very small (the difference is not significant) and its influence is not seen very far from

the shrub, it is seen consistently on all three dates. However, it could be safely ignored

in the areal-proportion site reflectance model when woody cover is low. Perhaps it

would contribute significantly to site reflectance at higher shrub cover (40-80%) than

was found in these sites. Note that this effect cannot be detected in the bush/grassland

site (Fig. 3).

BUSH GRASSLAND OUALLAM - HAPEX

i::

i:i
Jd.ll;I J_WG I0 JkUG 22

S,_t_L E DArE

Pg bo_kgr o_nd
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_ _ _grd

DEGRADED BWSHLAND SITE OUALLA_ - NAPE×
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 !'il
r
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Fig. 5. Proportions of the four components (Po, background; Pc, shrub crown; PT, shaded shub crown; Pz,

shaded background) estimated from field measurements of shrub size, density, shape and solar zenith angle

for each sample date.
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5.3. Results of the areal-proportion site reflectance model

As noted above, estimates of shrub cover from the geometric model were very
similar to transect estimates and so the modelled values are considered to be reason-

able. The cover proportions for the four components estimated from the geometric

model show that both sites are dominated by background (Fig. 5).

Figures 6 and 7 show the predicted and observed site reflectances and V|s for all

dates. The results of the two- and four-component models are summarized using the

mean of the absolute difference (MAD) of observed versus predicted reflectance, and

the mean absolute proportion error (MAPE; the MAD divided by the observed

reflectance) based on the six 'trials' (two sites on three dates) for each spectral

band (Table 4). The overall MAPE for red and NIR is about 7 8%. Note that the

site reflectances predicted from the two-component model is always higher than that
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Fig. 6. Observed (OBS) and predicted red and NIR reflectance of the bush/grassland site (top) and the

degraded bushland site (bottom) on three sample dates; observed site reflectance from the 1000-m transects,

predicted site reflectance from the two-component (2COMP) and four-component (4COMP) areal

proportion reflectance models.
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bushland site (bottom) on three sample dates; observed site vegetation indices from the 1000-m transects,

predicted site vegetation indices from the four-component (4COMP) areal proportion reflectance model.

Table 4

The mean absolute difference (MAD) and mean absolute per cent error (MAPE) of observed versus

predicted site red and NIR reflectance for the four-component and two-component site reflectance model

Four-component Two-component

MAD MAPE MAD MAPE

Red 0.030 0.10 0,024 0.09

N 1R 0.029 0.06 0.027 0,06

Total 0.08 0.07
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predicted from the four-component model because the dark shadow components are

ignored. The results of the two- and four-component models are essentially the same.

This is because, while the shaded components are clearly 'darker' (Figs. 3 and 4), their

areal proportions are very small (Fig. 5) owing to low shrub cover and moderate solar

zenith angles.

There are several possible explanations for the difference between modelled and

predicted site reflectances on some dates. It could be that the 1000-m transects used to

characterize site reflectance and validate the model did not accurately estimate site

reflectance due to sample variance. The lower red and NIR, and higher VIs, observed

in the bush/grassland site on 25 August might have been incorrect. This is not likely as

it is expected that VIs would increase, as observed, in this site due to the increasing

grass biomass, and also that the moist soil background observed on the third date

would cause lower reflectances and higher VIs (Van Leeuwen et al., 1993). The higher
red and NIR, and slightly lower NDVI observed in the degraded bushland site on the

second sampling date might have been incorrect due to differences in illumination

conditions (although the zenith angle was actually larger; Table 1). However, the

increase in green cover in the degraded site was very slight between the second and

third dates, and the higher NDVI on the third date may have been a result of moister

soil (Van Leeuwen et al., 1993).

It is also possible that the discrepancy between measured and modelled site reflect-

ance was due to inaccurate characterization of component reflectances or cover used

in the areal-proportion model. Cover estimates did not change very much between

sampling dates, so it is more likely that estimation of component signatures, especially
the background signature, is the problem, The difference between the observed and

predicted site reflectance, seen in Figs. 6 and 7, is due almost entirely to the estimates

of the background component reflectance because the background dominates the site

cover (Fig. 5).

The two VIs, NDVI and SAVI, showed similar patterns. The observed values

increased slightly during the observation period (Fig. 7) as the grass greened at the

bush/grassland site and the forbs germinated at the degraded bushland site. While the

SAVI is always lower in magnitude and range than the NDVI, the sensitivity of the VI

cannot be based on its magnitude alone, but also on the magnitude of the 'noise'

caused by soil background variation and viewing, and illumination geometry (Huete

et al., 1993). It is not possible to tell from this study if the SAVI is exhibiting less
sensitivity to soil background reflectance (but see Van Leeuwen et al. (1993)).

5.4. Results of the component reflectance submodel

Input parameters for the component submodel are summarized in Table 5. The red

and NIR crown transmissions were estimated from B6gu6's model using the equa-

tions r,,,_ea = (0.961 - 0.942c,,)°564(r 2 = 0.91), and rc,ni_ = (0.907 - 0.889c,.) °384

(r2= 0.91). Estimated crown transmission values were similar to those measured

for Sahelian tree species (Franklin et al., 1991) and lower in the red than the NIR

band owing to greater NIR transmission by leaves. (In Franklin et al. (1991), red and

NIR transmittances ranged from 0.55 to 0.85, but were roughly equal in the red and
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Table 5

Parameters for and results of the component refleclance submodel

241

Degraded bushland Bush grassland

Red NIR Red NIR

Input

t)L 0.07 0.40 0.07 0.40

c, 17)76 0.76 0.87 I).87

p, 0.34 0.45 0.13 0.33

r,. 0.46 0.57 (I.34 0.47

l,, 0.20 0.10 0.20 0.10

Kope,, 0.77 0.77 0.77 0.77

Predicted

R_ er,+,l 0.12 0.45 0.07 0.42

R, v.,,l 0.10 0.33 0.(14 0.25

R.,: p_,.d 0.18 0.27 0.06 0.17

Observed"

R+ ,,/,_ 0.15 0.47 0.09 (t.40

s.d. _ (0.05) (0.08) (0.02) (0.06)

RT.m 0.12 0.35 0.08 0.3 I

s.d. (0.04) (0.07) (0.02) {0.06)

R e,,,,_ 0.15 0.24 0.06 0.22

s.d. (0.05) (0.051 (0.021 (0.04)

"Observed values are from field data collected on 25 August 1991.

_' s.d., standard deviations of field samples.
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Fig. 8. Results of the component reflectance suhmodel for the three components, shrub crown (Re), shaded

shrub crown (RI) and shaded background (R,r). Vertical line shows the sample means of observed values

for the last sample dates 5: one standard deviation and horizonlal dash shows Ihe value predicted from the

model for degraded bushland (left) and bush/grassland (right) red and N IR rcflcctance.
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NIR, implying a larger contribution from canopy gaps.) The predicted reflectances

for the crown and shaded components, Re., RT and Rz, usually fell within one

standard deviation of the observed mean values measured on the third sample date

for the two sites, 22 or 23 August, with the exceptions of RT.r_j and Rz,,,,, in the bush/'
grassland site (Fig. 8).

Figure 9 shows the modelled component signatures, Re., Rr and R z, when the foliage

cover within the crown, c,., varies from 10% to more than 90%, and the parameters
from the degraded bushland site are used. This figure shows the non-linear change in

component reflectances as a function of foliage cover, and hence wavelength-dependent
canopy transmission. Sunlit crown reflectance (Re) decreases rapidly in the red band as

the foliage cover increases from 10 to 70% because canopy gaps are being filled. In the

NIR band the sunlit crown reflectance is actually predicted to increase slightly with

foliage cover (even though soil reflectance is greater than leaf reflectance) owing to
canopy transmittance, which is still high (26%) when foliage cover is 98%. Shaded

crown and background reflectance (Rr and Rz) decrease most rapidly in the NIR as
cover increases from 70 100%, and the leaf transmission of the soil signal decreases in

this single-scattering model. In the red band, shaded soil is always brighter than sunlit

crown (because of the bright soil background), and shaded crown is always darker,

while both decrease approximately linearly with foliage cover in this example. Unfor-

tunately, without additional concurrent field measurements of leaf area and canopy

reflectance, we were unable to validate this simulation over a wider range of cover
values than are illustrated in Table 5 and Fig. 8.
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Fig. 9. Modelled values of red and NIR reflectance of the three components, shrub crown (Re), shaded

shrub crown (Rr) and shaded background (Rz), for varying values of vegetation cover within the crown

based on the parameters (p,,, Rs, l_t, K,,t,,,,) from the degraded bushland site.
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6. Discussion and conclusions

243

Sparse shrub savanna is an important land cover type in the West African Sahel,

covering about half the land surface in some areas. The relative cover of shrubs,

herbaceous plants and soil determine the partitioning of water (soil moisture,

evapotranspiration) and energy (radiation balance), and thus affect land surface-

atmosphere exchanges in the region. Remotely sensed estimates of vegetation cover

and structure could be used in regional scale models of the effects of climate change on

water and energy balance, and the carbon cycle.

In this study an areal-proportion model of the canopy reflectance of a shrub

savanna predicted the surface reflectance as the weighted average of the component

reflectances. A two-component model, including only shrub crown and background

but ignoring shaded components, produced similar results to a four-component

model that relies on three-dimensional crown geometry to estimate the area of

shaded components. This is because, although the measured reflectances of shaded
components were darker, in these sites shrub crown cover and density were low, so the

shaded components have very small areas and contribute little to surface reflectance.

This suggests that for the range of dates and zenith angles observed in this stud3', it

may be possible to ignore a shade component when applying an areal-proportion

model to satellite imagery of Guiera shrub savanna with shrub cover of less than 10%.
Two Vls, NDVI and SAVI, were also calculated from the modelled red and NIR

reflectance for the sites and were similar to observed values. NDVI and SAV1 showed

the same pattern although SAVI was lower in magnitude and range. The VIs

(observed and predicted) increased in value over the three sampling dates as the

growing season progressed and green cover increased (Table 2). The third paper in

this series discusses the sensitivity of the Vls to changes in soil brightness (Van
Leeuwen et al., 1993).

The results of the areal-proportion model illustrate the need for more extensive and

systematic sampling of component reflectances (especially the background) over a

wider range of plant cover and illumination conditions in order to validate the

model using satellite imagery. This has been carried out during the 1992 HAPEX

field campaign, using hand-held, pole-mounted and airborne radiometers and a

mast-mounted CCD (charge-coupled device) camera.

The component submodel was able to predict three component signatures as a

function of vegetation cover within the crown and wavelength-dependent canopy
transmission. This could be combined with the areal-proportion model to retrieve

both canopy cover and vegetation cover within the crown. Presumably the latter is

best related to vegetation amount (leaf area index or biomass), and thus to intercepted

and absorbed PAR (Bagu6 et al., 1993). The component submodel could be extra-

polated further to a discrete vegetation canopy layer (shrubs) over a continuous grass

layer (continuous in its spatial distribution+ but with less than 100% cover) over soil.

Shrub canopy reflectance, for example, would then be

Rc = pvcv + f)hct+r,2+ p._,r,:-r_

where Ph, ch and _-_,"are the reflectance, cover and two way transmittance of the
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herbaceous layer (grass), respectively. This type of spectral interaction may be

important in sites with higher shrub and grass cover, such as the central and southern

supersites instrumented during the HAPEX-Sahel IOP.

In the HAPEX study area, for sites dominated by grass with low shrub cover (like

the bush/grassland site), the first-order spectral interaction of the grass layer with

underlying soil may contribute significantly to spectral response, and methods for

correcting VI-APAR relationship for soil effect (including illumination-view angle

effects) will be most useful (Huete, 1987, 1988; Huete et al., 1992; Van Leeuwen et al.,

1993). In sites composed mainly of discrete plant canopies (like the degraded bush-

land site) or groups of canopies (tiger bush), or sites with both shrubs and grass but

with higher shrub cover (10-40%), an areal-proportion model that includes

geometric effects (shadows predicted from crown shape and illumination geo-

metry), using the component submodel to predict the effects of crown structure on

component reflectances, may be useful for retrieving vegetation parameters of

interest. These parameters include shrub size and shape, and foliage density (leaf

area or cover within the crown). Alternatively, if c,, or r, could be estimated directly

from multispectral (perhaps multiangle) imagery, by inversion of a model such as

Bdgu6"s, these quantities would be more directly related to APAR (and hence,

primary productivity) than the cover of the Li Strahler components.
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